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SUMMARY 
In application to the Gulf of Mexico (GOM), a new DieCAST ocean model, which uses a modified Arakawa 
‘a’ grid, and the SOMS model, which uses an Arakawa ‘c’ grid, give remarkably similar results. The new 
model avoids ‘null space’ problems of the standard ‘a’ grid approach by first using fourth-order 
interpolations to a ‘c’ grid advection velocity, then applying incompressibility to the result. Accuracy is 
further improved by using fourth-order pressure gradient approximations at ‘a’ grid locations. Incompress- 
ibility with general geometry is satisfied efficiently by a fast-converging iteration with a regular geometry 
elliptic solver. Results are compared with satellite-measured r.m.s. sea surface elevation anomaly and 
detailed front structures, climatological mean thermocline and empirical orthogonal functions and other 
observations. 
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1. INTRODUCTION 

The interaction between continental shelf and deep water flows typically occurs across a steep 
narrow shelfbreak. The need for better models of this interaction has spurred the development 
of the new DieCAST ocean model as part of the Semi-Enclosed And Coastal Ocean-Atmosphere 
Simulation Technology (SEACOAST) Project. The DieCAST model is a refined and extended 
version of the laterally ‘semi-collocated’ modified Arakawa ‘a’ grid approach described by 
Dietrich e f  al. ’. It evolved from the freestream submodel of the Sandia Ocean Modeling System 
(the SOMS 

Z-level models such as the SOMS and Bryan-Cox5q6, models are stable with large-amplitude 
steep topography when a surface pressure formulation is Thus a possible approach is 
to use a z-level model with lateral-boundary-fitted co-ordinates based on local depth contours. 
The ‘a’ grid is easier to use in boundary-fitted co-ordinates. However, it is not as widely used 
as the ‘c’ grid for incompressible flows. Here we show that an ‘a’ grid DieCAST model behaves 
quite like a ‘c’ grid model 

We describe the DieCAST model in Section 2. In Section 3 we compare SOMS and DieCAST 
model results extensively with GOM observations and with each other. The SOMS model has 
also been applied with high lateral resolution (263 m) to Lake Neuchatel,’ the Gulf of Mexico9-’’ 
and the vortex street in the wake of Barbados” and has demonstrated grid convergence in 

which uses an Arakawa ‘c’ staggered grid. 
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resolution sensitivity experiments with a prototype ocean problem.’ The DieCAST model is 
being applied to the Labrador Current (with Richard Greatbatch), the South China Sea (with 
Le Ngoc Ly), the Great Lakes (with Bill O’Connor), the Mediterranean Sea (with Paul Martin) 
and Hudson Bay (with Charles Lin). We plan to couple it to a sea-ice model. 

2. DESCRIPTION OF THE NEW DIECAST MODEL 

The DieCAST model is a hydrostatic, incompressible, rigid-lid, partially implicit, fully conserva- 
tive ocean and lake model. The numerical differences from the SOMS model stem only from 
using an Arakawa ‘a’ grid instead of the Arakawa ‘c’ grid used by SOMS. The standard ‘a’ 
and ‘c’ grid approaches have well-known strengths and weaknesses. The ‘a’ grid is strong with 
the Coriolis terms but weak with the pressure gradient; the ‘c’ grid is weak with the Coriolis 
terms (however, see Reference 4) but strong with the pressure gradient. These two terms are the 
largest terms in the most energetic flow scales over most of the ocean. The approach taken by 
SOMS and DieCAST models is to use higher-order approximations and to interpolate between 
the ‘a’ and ‘c’ grids where appropriate to improve the weak terms. This leads to accurate and 
robust (stable with realistically small dissipation) models, which is important because the 
dominant ocean eddies are one to three orders of magnitude smaller than the world ocean, 
behave in a nearly inviscid manner and have not been successfully parametrized. 

The SOMS model is described in detail in the references noted above. We briefly discuss the 
DieCAST model numerics here. 

The DieCAST model solves all conservation equations on a common grid of cell-centred 
control volumes (the scalar cells in the SOMS model). The incompressibility (mass conservation) 
equation and pressure gradient terms, which are the weak points of collocated grids, receive 
special treatments as we now describe. 

The first part of the special pressure gradient treatment is to use a special ‘contravariant’ 
horizontal advection velocity. This avoids the ‘null space’ pressure problems of the standard ‘a’ 
grid schemes. The contravariant velocity is defined by using fourth-order interpolations of the 
‘covariant’ cell-centred results to the conventional staggered Arakawa ‘c’ grid locations. The 
incompressibility of the staggered advection velocity is then satisfied by ‘clearing out’ the 
divergence using a second-order hydrostatic elliptic pressure adjustment that is identical to the 
method used by SOMS and similar to the one described by Dukowicz and Malone.’ The 
resulting overall advection scheme is identical with the one used for the transport of scalar 
cell-centred quantities by SOMS. It is fully conservative, including quadratic energy-related 
quantities. 

The second part of the special pressure gradient treatment is to use fourth-order approxima- 
tions in the momentum equations at the ‘a’ grid locations. These use data spaced over four grid 
intervals on the collocated grid. For well-resolved flow components these approximations are 
more accurate than the standard second-order Arakawa ‘c’ grid approximations using data 
spaced over one grid interval. 

Zones near boundaries require special evaluation of the pressure gradient. Fourth-order 
non-centred methods could be devised and investigated, but we use a simpler approach: we 
assign a zero value to the pressure gradient wherever boundary values are needed in its 
evaluation. These are substituted into our fourth-order scheme where needed near boundaries. 
(Our scheme is written as a combination of the four nearest pressure differences evaluated at ‘c’ 
grid locations.) The result is consistent with outflow points where the boundary tangential 
velocity and normal gradient of the normal velocity are given zero values. At rigid boundary 
points the geostrophic pressure gradient is zero, so this is consistent except very near the 
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boundaries. This simple approach thus seems reasonable for general circulation studies that do 
not resolve significantly non-geostrophic boundary regions. Comparison of 'a' grid DieCAST 
model and 'c' grid SOMS model results (see Section 3) shows that the boundary treatment has 
little effect, because the SOMS model uses the second-order standard 'c' grid approximation 
which never requires pressure values outside the water-containing zones. 

The less accurate small-scale flow components are also robust with the DieCAST fourth-order 
pressure gradient. As with the SOMS model, the DieCAST model requires very little total 
dissipation for numerical stability. Although boundary points are less accurate, this can be 
compensated by a lateral-boundary-fitted version that is under development. 

To avoid the need for elliptic rigid-lid pressure solvers applicable to island and irregular 
geometry, our models previously used a 'swamp layer' approach, beginning with Zuur and 
Dietrich.' This involves artificially treating land locations as having one layer of highly viscous 
water such that it never accelerates significantly from rest. In practice, the initial flow at each 
time step is set to zero in top layer locations over land, which is equivalent to assuming an 
infinite bottom drag coefficient. Then the time step is carried out as if there were actually one 
layer of water over land. Except for a very brief initial transient during the first few time steps, 
this results in maximum velocities of water over land being greatly smaller than the velocities 
in the 'true' water regions and is thus a good approximation. We have demonstrated this by 
comparing the swamp layer approach with an exact approach in modelling flows around 
islands.' '.' The exact approach uses an efficient algorithm that iteratively applies a variable 
coefficient regular domain elliptic solver in such a way that convergence to exactly non-divergent 
flow with no flow over land is achieved (see Appendix). 

The DieCAST model is simpler and runs slightly faster than the SOMS model. Its time step 
limit is determined mainly by a combination of internal waves and advection. Scaling gives 
internal wave speeds of roughly 3-5 m s- '. Analytic determination would have to deal with 
highly non-linear stratification and our fourth-order pressure gradient. Maximum velocities are 
about 2 m s-', so a reasonable estimate for the fastest-propagating signal would be about 
5 m s- '. This gives about 30 min time step limit with 10 km resolution. We used a 20 min time 
step with 1/12' (approximately 9 km) resolution (192 x 144 x 20 grid) in the Gulf of Mexico. 
This gives about 1700 days per CPU day on a single Cray Y MP pipe (computing at an average 
rate of 210 M flops). The model fully vectorizes and parallelizes. 

3. COMPARISON WITH THE SOMS MODEL AND GULF OF MEXICO 
OBSERVATIONS 

The Gulf of Mexico (GOM) is dominated by its Loop Current, which feeds 25 million cubic 
metres per second into the Gulf Stream after passing through the Florida Strait. The Loop 
Current sheds major eddies that propagate westwards and dominate the western GOM 
circulation. 

The SOMS and DieCAST models were recently applied to a series of GOM s t u d i e ~ . ~ * ' ~ * ' ~  
Because of their low numerical dissipation, the models can realistically stimulate even small-scale 
features. This robustness with small-scale features is shown by Figure 1, which compares 
DieCAST-model-simulated small-scale Loop Current frontal structures with satellite observa- 
tions dated 20 April 1984. The model simulation was completely determined by time-constant 
Caribbean Sea inflows, wind stress and surface fluxes (including both temperature and salinity 
effects). The surface fluxes are determined by restoring to specified surface conditions with a 30 
day relaxation time. These were based solely on January climatological data which do not have 
these strong fronts. No other data assimilation was used. The temperatures are slightly cooler 
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Figure 1. Top level (depth 10 m) temperature from the DieCAST Model and from observations (inset) in the Gulf of 
Mexico. The model snapshot is at day 1220 of a 1/12" by 20 layer numerical simulation. The observations are sea 
surface temperature derived from a satellite image dated 20 April 1984 (p. 87, 'Gulf of Mexico Physical Oceanography 
Program Final Report, volume 11'. MMS publication 87-007, U.S. Department of Interior, Minerals Management 
Service, Gulf of Mexico OCS Region, New Orleans, LA, published by Evans Waddell and Murray L. Brown). The 

singledigit contour labels in the model output omit the lo's digit; thus e.g. the label '5 '  denotes a temperature of 25 "C 

than they would be if April climatological restoring were used, especially in the longer-exposed 
water exiting the Florida Strait. 

Case B3" is probably one of the most extensively validated single runs ever in ocean 
modelling. Case B3 uses 20 layers vertical and 20 km horizontal resolution and is run for seven 
model years with prescribed time-independent inflow into the Caribbean patterned after observa- 
t i o n ~ . ~ ~  Open outflow conditions are prescribed in the Florida Strait. Local wind-forcing and 
thermohaline effects are ignored. Inflows are switched on full amplitude at the first time step. 
The results show shed eddy size (300 km), phase speed (4 cm s-') and mean shedding period 
(254 days) that are close to observations and theory. Figures 2-6 compare Case B3 results with 
observations. 

Figure 2 compares with r.m.s. sea surface height anomaly derived from satellite altimetry. 
Major features are in close agreement. 

Figures 3 and 4 compare with mean thermocline and empirical orthogonal functions derived 
from the full history of available GOM data. Only wintertime (January-March) data are 
included, because the wintertime surface mixed layer corresponds to the zero surface stratification 
resulting from the insulated surface condition used by the model. The model accurately simulates 
the mean thermocline. The model's deep water (minimum) temperature is 6 "C in both the initial 
conditions and the water entering the Caribbean rather than the 5 "C observed. The linear 
equation of state used in this study gives a bottom density at 6 "C equal to the 'true' non-linear 
value at 5 "C. The model's first empirical orthogonal mode contains most of the variance and 
is quite similar to observations (Figure 4). Its small vertical gradient near the surface reflects its 
insulated surface condition. The differences in the second and third modes are larger, but these 
contain relatively little of the variance. The remarkable agreement of the higher-order modes 
suggests that the observations are reliable even for such secondary modes. 
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Figure 2. Comparison of model and observed r.m.s. sea surface height anomaly. Both plots have a 2.5 cm contour 
interval. To get the r.m.s. height in centimetres, multiply the single-digit contour labels by 2.5. The model equivalent 

sea surface height is derived 
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Figure 3. Comparison of model and observed vertical temperature profiles. These are laterally and time-averaged. 

Standard deviations are also shown 

Figure 5 compares with the 'the most extensively studied eddy ever'.'' (More recently, even 
better data have been gathered for the Nelson Eddy.) The observations show a stratified surface 
layer typical of summertime conditions when they were made. The model emulates the mean 
climatological conditions which have a relatively deep surface mixed layer by assuming an 
insulated surface (no surface heat flux). The result is that, other than its surface mixed layer, the 
model is quite similar to the observations. Even secondary features are seen in the model results, 
including: a shallow cool pool near the centre of the Loop Current and recently shed eddies; 
and vertically coherent small-scale vertical displacements of the thermocline under the separated 
Yucatan western boundary current. 

Figure 6 compares with observed counter-rotating eddies in the western GOM reported by 
Brooks and Kelly;16 Dietrich et ~ 1 . ' ~  show that the paired cyclonic eddies develop only when 
the lateral diffusivities are much smaller than 100 m2 s - '  (Case B3 uses 20 m2 s-'). The 
mechanisms of these and other features are discussed by Dietrich et ~ 1 . ' ~  

Figure 7 compares SOMS and DieCAST model results for Case B3. The two models assimilate 
no data and use the same initial and boundary conditions, resolution and physical parameters. 
Thus the difference between the results is a measure of the truncation error difference between 
their grids. The first three major Loop Current eddy-shedding times agree within a few days in 
the two models (near days 570, 900 and 1210). Even secondary features are similar through the 
first three model years and nearly identical through the first eddy shedding cycle. The major 
eddy scale advection time scale is O(10) days. Thus the remarkable similarity even after O(lOO0) 
days supports the quality of both models as well as the extensive data used in their validation. It 
also suggests that if the boundary and initial condition errors are known with errors smaller than 
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Figure 4. Comparison of model vertical empirical orthogonal functions with those from observations. The percentage 
of total variance represented by each EOF mode is given in each panel, with the observations value located above the 

model value 
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(from Forristall, et al, 1992) 
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Figure 5. Vertical cross-sections of temperature ("C) through a recently shed Loop Current eddy. The observations and 
model cross-sections have the same vertical and horizontal scales. The observations are from a NE-SW slice through 
the most thoroughly measured eddy ever. Model results are from a longitudinal-depth cross-section through the Loop 
Current core. The singledigit contour labels in the model output omit the lo's digit; thus e.g. the '6' isotherm near the 

top surface represents 26 "C while the '7' isotherm near 900 m depth represents 7 "C 
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Figure 6. Paired eddy formation near the western GOM shelfbreak: observations and model results wifh no data 
assimilation. The observations are 80 days apart. The model results are 75 days apart (days 1935 and 2010 from Case 

B3). The maximum velocity in the region shown in the model results is about 50 cm s- '  
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Arakawa "a" grid DieCast model Arakawa " c ' ~  grid SOMS model 
Figure 7. Intercomparison of two models in the Gulf of Mexico. Rigid-lid pressure (converted hydrostatically to free 

surface height anomaly) contours and velocity vectors are shown 

the truncation errors of these runs, the GOM might be quite predictable through at least two 
eddy-shedding cycles. 

In Figure 7 the DieCAST model gives realistically larger maximum Loop Current velocities (by 
a few per cent), while the total pressure range is slightly smaller than from the SOMS model. 
Apparently, the DieCAST model gives slightly more intense Loop Current fronts with the 20 km 
resolution used. Thus fronts, which contain a range of scales as in the Fourier series of a step 
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function, appear slightly better represented by the DieCAST model. The SOMS model could also 
be improved by using analogous fourth-order pressure gradient approximations, but the 
improvement would be limited by the accuracy of the Coriolis terms even with the fourth-order 
interpolations presently used. 

4. CONCLUDING REMARKS 

GOM observations include an extensive base of time-dependent aspects of GOM general 
circulation as well as detailed instantaneous snapshots. The close agreement of the SOMS ocean 
model with these observations even with steady inflow conditions and no transient data 
assimilation shows that the natural time dependences that develop spontaneously with the SOMS 
model are very similar to the observed ones. This supports the dynamic similarity of the 
SOMS model and the GOM. Such dynamic similarity is critical to reliable and useful 
application of ocean models. 

The close agreement of O(1000) day simulations in the GOM between the Arakawa ‘c’ 
staggered grid SOMS model and the new Arakawa ‘a’ semi-collocated grid of the new 
DieCAST model shows that truncation error has a secondary effect on major time dependences 
for at least O(lO00) days in both models. Thus we have shown that two fullprimitive equation 
ocean models (SOMS and DieCAST) are dynamically similar to each other as well as to the real 
G u y  of Mexico even though they use entirely different finite difference approximations because 
of their different grids. 

The DieCAST model requires less computation per time step than the SOMS model when 
one takes advantage of metrics that are the same for all field variables. It is also stable with 
slightly longer time step, because the closest data used in the pressure gradient approximation 
are two grid intervals apart, which reduces the frequency of the smallest-scale-resolved internal 
waves compared with SOMS. (The time step increase depends on the ratio of the fastest flow 
velocity to the fastest internal wave speed.) Of course, the spatial accuracy of the smallest resolved 
scales is reduced compared with the Arakawa ‘c’ grid approach even with the higher-order 
approximations used. 
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APPENDIX: SURFACE PRESSURE SOLUTION IN IRREGULAR DOMAINS BY 
ITERATIVE APPLICATION OF A REGULAR DOMAIN ELLIPTIC SOLVER 

Our basic surface pressure formulation is the same as used by Dietrich et aL2 and Dietrich3 
and similar to the one used by Dukowicz and Ma10ne.~ However, we use a modified solution 
procedure algorithm that is better suited for vector and parallel computers when irregular 
boundaries and islands occur. 

We start with a trial surface pressure such as from the previous time step. The hydrostatic 
relation is then applied to get the pressure everywhere below the surface. We then march the 
momentum equations one time step. We then determine a first surface pressure correction using 
Dietrich’s aforementioned original procedure except that the top model layer is extended over 
land, resulting in a regular domain for the elliptic pressure solver. Thus, as part of an iteration 
to the exact solution, water is assumed to exist in a thin layer over land as well as in the ‘true’ 



SEMICOLLOCATED OCEAN MODEL 1113 

modelled ocean. The pressure correction is then applied to the flow. The flow over land is then 
set to zero. This results in non-zero divergence at  'true' water locations in the top level, but 
only along coastal boundaries. We then calculate a second pressure correction using Dietrich's 
procedure. When the new pressure correction is added to the first iteration result, the divergence 
is again exactly zero everywhere, but again there is some flow over land. However, it is greatly 
smaller than in the first iteration result. Further iterations can be carried out until the desired 
level of accuracy is achieved. In summary: 

(1) apply a regular geometry solver to get the first pressure correction 
(2) apply the pressure correction to get a non-divergent velocity 
(3) set the flow over land to zero 
(4) evaluate the residual (divergent velocity) error adjacent to the corrected land boundary 

points; if the residual is sufficiently small, the solution procedure is complete 
( 5 )  solve for a pressure correction forced by the residuals and return to step (2). 

Rapid convergence results because the residuals are highly localized along irregular coastal 
boundaries. This procedure greatly reduces the non-vectorizable and non-parallelizable compu- 
tation often required by general direct elliptic solvers, while achieving much faster convergence 
than most iterative solvers. The direct solver used here is an EVP which fully 
vectorizes or parallelizes in one of the two dimensions. This procedure is similar to the 'block 
implicit relaxation' methods used by Dietrich ef ~ 1 . ' ~  for elliptic problems. Both are similar to 
domain decomposition methods and can be combined in application to large problems. 
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